Volume 4, Issue 12, December 2014 ISSN: 2277 128X
International Journal of Advanced Research in

Computer Science and Software Engineering

Research Paper
Available online at: www.ijarcsse.com

Quartic Spline Collocation for Solving Eigenvalue Problems

E. A .Zanaty, Sultan Aljahdali
Information Technology Dept.
College of Computers and Information Technology
Taif University, Taif, Saudi Arabia

Abstract—In this paper, we develop quartic spline collocation methods and treat a number of eigenvalue problems
defined by partial differential equations with constant and variable coefficients, on rectangular or circular domains.
The presented methods are an interesting and easy to implement on a computer and being capable of producing very
accurate approximations of eigenvalue defined by partial eigenvalue problems.
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l. INTRODUCTION
This paper solves a class of eigenvalue problems defined by partial differential equations with constant and variable
coefficients, on rectangular or circular domain. The methods [1-3] are based on quartic splines which provided by
Christina [4] for linear second order elliptic partial differential equations (PDES), that is, piecewise quartic polynomials

with C* continuity, and the collocation discretization methodology with the midpoints of a uniform partition being the
collocation points [5-6]. The choice of approximating space, basis functions and collocation points plays an important
role in the accuracy of the approximation and the efficiency of the calculations. Spline collocation methods are discussed
in many papers [7,8,9,11,12], and it is quite common in these literature, to pick as data points the gridpoints of the
partition, when odd degree splines are used, and the midpoints when even degree splines are used. In this paper, quartic
spline collocation methods [6] are applied to solve class of eigenvalue problems which solved by many others methods
[1,2,3,4,5].

Let Q = (0,a) % (0,b) be a rectangular domain and let & be its boundary. In this paper, we shall assume that Q is

the unit square without loss of generality, namely, thata =b =1. Let us consider in ﬁ the fixed membrane problem
defined by the PDE:

(1.1) U (% Y) +Uy, (% Y) + A u(x,y)=0

with Dirichlet boundary conditions

(1.2) u(x,y)=0 on 0Q =boundary of Q

The eigenvalues of problem (1.1) and (1.2) are known to be

(1.3) PR LAY +(E)2], rs=123,..
a

and the corresponding eigenfunctions are

(L4) Urs (6, Y) = C, i )sin(- ).

The boundary shape has been transformed to the unit square Q) ={(0,1) x (0,1)}. Let us define on the intervals
0<x<1and 0<y<1 the partitions:

A, ={0=Xx, <X, <..<Xy =1}

A, ={0=y, <y, <.<yy =1}

and the set of points

X +X .
T ={z =%, i=12,...M, X, =75, Xy =Tp.a}
(L5)
Yiaty; .
T ={r} =%, i=12,.,N, y, =7y, =7).,}
the  midpoints  of  the  partitons A, and A, respectively. Then T E{(Tix,’[]y),

i=01..,M+1, j=0,1...,N+1} isthe set collocation pointsS_l.
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Il. METHOD OF SOLUTION
In this section, we present quartic spline interpolation with uniform grid partitions A, and Ay of the intervals

[0,a], [0,b] with mesh sizes h, = i h, =% respectively. Then A=A, x A, is the induced grid partition of
0=0udQ=[0,a]x[0b], and T={(,7!), i=0L.,M+1, j=01..,N+1} is the set

collocation points Q.
Let S, , = SMX ® 841Ay be the space of piecewise biquartic splines with respect to partition A of Q, where SMX

and S, s, e the space of quartic splines with respect to partitions A, , A, respectively. Based on partition A, we
define the biquartic spline space, the space of biquartic piecewise polynomials of continuity C3(§_2) on the nodes of

partition A, and a set of basic functions for it. We choose the sets {®(x)}""? and {<I)J¥(y)}'j\'j_21 as the basis

and 84'Ay respectively, ~where @ (X) = d)(hi—i +3),1=-10,...M +2

X

functions for S, ,

15x

and @7 (y) = (D(hl —J]+3), j=-10,...,N + 2, and the quartic spline function @ is defined by, [6]
y

x* for 0<x<1
x* -5(x-1)* for 1<x<2
1) B(X) = x4“—5(x—1)4“+10(x—2)44 4 for 2<x<3
X" =5(x-1)" +10(x—2)" -10(x—-3) for 3<x<4
x* -5(x-1)*+10(x-2)* -10(x-3)* +5(x—4)* for 4<x<5
0 elsewhere

A set of basis functions for the biquartic spline space defined with respect to partition A is the tensor product
O ={D(x) D} (y)}2 ij_21 of quartic B-splines.
Let S € 84'A be the biquartic spline interpolant of the true solution U defined by the interpolation relations

(2.2) S(zi'\ 7)) =u(z],7}); 0<i<M+1 O0<j<N+1.
where the approximation of S can be written as

M+2 N+2
(2.3) S= Z Z eijq)i(x)q)j(y)

i=—1 j=-1
Whenever the boundary conditions (1.2) of the problem are homogeneous Dirichlet or Neuman, that is U=0 or
u, =0, on each of the boundary subintervals of partition A of €2, assume that the approximate space satisfies exactly

the boundary conditions. A basis for such a space is the tensor product of the sets {C'Iv)I ()}, and {&) i (y)}'j“:1 where
O, =D, +D,, D,=0,+D
O =0, i=3..M-2

Dy, =Dy, Dy, Dy =Dy =D,
and {@, (y)}'j\':1 are defined in a similar way. The sign in the definition of @, is chosen according to the type of

boundary conditions. The “-“corresponds to Dirichlet conditions, while the “+” corresponds to Neumann conditions.
Then the approximation (2.3) can be written as

24) =) > 8,8,008,()

i=1 j=1

Ill. FIXED MEMBRANE PROBLEM
To approximate fixed membrane problem defined by equations (1.1) with supplementary condition

(3.1) u(x,0) =u(x,)) =0 and u(0,y)=u(@ y) =0
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(2.1) to get the following relations

M N
(3'2) uxx(TIX'z-lg) Z Z
i=1
M N
33  u, (7)) =Z z
i=1  j=1
M NJ -
(3.4) u(rlx,rky)z_z > 6

i j=1

=1
where | =1,2,...,M, k=12,...,

Then by using the above approximations (3.2)-(3.4), equation (1.1) is transformed to the following eigenvalue problem

(3.5) AO+iDO =0

where

D=,(r})®,(z))

i®i
N

rl)CDJ-(r

(7)) D, (z))

(01,0,

<)

0,,®, () D" (})

A= &)?\(T|X)&)j(fl<)l)+i)i(TIX)&)\\(TK)

Oun)"

December - 2014, pp. 65-71

we shall use biquartic spline collocation methods defined by the approximation (2.4) and the quartic spline function

2301 761
761 2301
| 751

1=12,...M, k=12,...,N and 0
The matrices A and D can be written as the product of the matrices as the following
(3.6) A=C.Q+P.H
(3.7) D=P.Q
where
1541 751
751 2301
| 761
|
@8 ,__1_
24 x16
[T
T
(3.9 Q=
(154 75
75 230
1 76
1
1
 24x16
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761 |
2301 761 I
761 2301 761 I
I 761
I
T_
1
7% 1
230 76 1
76 230 76 1
1 76 230
1 76
1

76 1
230 75
75 154 |

I
751

1541
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[—141 3l |
31 -101 41 |
I 41 -101 41 |
I 41 -101 41 |
310 c__ 1
8h?
I 41 -101 41 |
| 41 -101 31
| I 31 -141
T
Tl
(3.11) H=
Tl
L Tl_
where
-14 3 1
3 -10 4 1
1 4 -10 4 1
1 4 -10 4 1
T, = 12
8h
1 4 -10 4 1
1 4 -10 3
i 1 3 -14]

and | is the identity matrix of order M and N, respectively.

The main advantage of using this method over Liu and Ortiz [2], EI-Hawary [3,4,5,6] is that for certain values of M and
N the elements of the above matrices can be evaluated once and for all. Economization in computation will be achieved

if, for example, and the above matrices are stored for different values of M and N .

IV. CLASSOF SYMMETRIES OF EIGEN FUNCTIONS
We shall now consider the use of symmetries in a given differential eigenvalue problem to try to reduce the size of
associated linear algebraic eigenvalue problem. This discussion will initially be referred to the vibrating membrane
problem, (1.1) and (1.2) as given in Liu and Ortiz [2] and in El-Hawary [10].
Let us assume that I is the number of interior lines in the domain ), and it seems natural to treat symmetrical
problems by using an even number of interior lines, we choose I =2m.
We shall consider first the even-even symmetry class. We have

(4.1) Uy g i (X) = U (X), k=12,..,m

V. HELMHOLTZEIGENVALUE PROBLEM
Let us consider the eigenvalue problem defined by the helmholtz partial differential equations over a unit circular

domain C with boundary B :

(5.1) vu(r,0)+Au(r,8)=0 on C
and

u(0,6) =u(,é) =0, 0 (0,2x)
©2) u(r,0) =u(r,1) =0, re(0J)
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where V stands for the laplacian operator coordinates,

> 10 1 0o

3 v_8r2+r or 2 002
making use of the transformation
X=r, y= 9
2r

the circular domain C is mapped into the square domain [0,1] x[0,1] and the problem expressed by egs. (5.1), (5.2) is
transformed to

(5.4) Uy (X, Y)+ U, (%, Y)+—( Uy (6 y) + AU y) =0

with the boundary condltlons

u(@,y)=u@y)=0, ye (01
u(x,0) =u(x,1) =0, re01
To solve the problems (5.4) and (5.5) we set

M N o _ _
(5.6) uxx(TIX'TIg):Z Z eijq)?\(rlx)q)j(rlg)

(5.5)

j=1
M N -
(5.7) u, (Tlx,’[ky):z z G, ( )@, (z)
i =1
JN
2

M fad —~ —~

(5.8) uyy(rlx,rlf)—z 0, (7)) D} (z})

i=1  j=1

N

59  u(c,z) Z > 6,®, ()P (7))

i=1 j=1
where 7°eT*, 1=12...M, z)eT’, k=12,..,N defined by equation (15). Using the above
approximations defined by equations (5.6)-(5.9), equation (5.4) is transformed to the following eigenvalue problem
(5.10) AG+1DO =0

where
A= (7). @ () + AP} (7)) @ ()] + A, [ (7)) @} (7))]
D=, () ®,(z})

1=12,...M, k=12,...,N and 0 = (01,02, MN)

The matrices A and D can be written as the product of the matrices as the following

(5.12) A=C.Q+A.(R.Q)+A,.(P.H)

(5.12) D=P.Q

where the matrices C,Q, P, and H are defined above by relations (3.8)-(3.11) and the matrices R, A, and A, are
defined as the following:

[ 221 231 I
=211 0 221 I
-1 =221 0 221 I
-1 =221 0 221 I
1
~ 48h?

-1 =221 0 221 |
-1 =221 0 211
-1 =231 -221]

and A, A, are block diagonal matrices in the form:
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Aj
A
Aj = . , j=12
i A ]
where
1
Al(k) :[al(t) 5Ij]' al(t) :T_X
I
k) _ 14 S (2) _ 1
Az _[alk Ij]! ayy —m
I
and
X, + X
T|X=%, 1=12,....M, k=12,....N.

V1. EIGENVALUE PROBLEM FOR PDE WITH VARIABLE COEFFICIENTS
Let us consider, an eigenvalue problem defined on a unit square domain R [2], with the Dirichlet boundary conditions:

(6.1) U, (X, y) +U,, (X, y)=10x sin(8z y) u(x,y) + Au(x,y) =0
with
(6.2) u(x,y)=0 onB
As before we define on (X, y) €[(0,1) x (0,1)] the partitions:
A, ={0=x, <X <..<Xy =1
Ay ={0=y, <y, <.<yy =1}
To solve the problems (6.1), (6.2) we use the approximations (3.2)-(3.4) with the midpoints T E{(TiX,TJY),
i=01..,M+1, j=0,1...,N+1} asacollocation points of C , where

Tx E{T-X — Xi—l +Xi

H X X
, 1=12,..,M, X, =74, Xyy =Tyt

(6.3)
Yiaty;

TV ={¢) = Cj=12..N, y, =7, yy =7}

Then equation (6.1) is transformed to the following eigenvalue problem
(6.4) AG+1DO =0
where 6 = (g?l,éz,...,éM O
A= q)i\\ (). D, (r))+ @ (7)) 'cD\j\ (z{)+ AlD (7)) D, (z))]
D=9, (Tlx)q)j (z¢
and A, is block diagonal matrix in the form
Al

AZ

(6.5) A = . ,

AM

where
AY =[a91=[a, 5,;1 a, =-107'sin@Bzz)), 1=12..,M, k=12,..,N
Using the relations (3.8)-(3.11) and (6.5) the matrices A and D can be written as
(6.6) A=C.Q+P.H+A .(P.Q)
(6.7) D=P.Q
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VIlI. CONCLUSION
In this paper, we have solved eigenvalue problems defined by partial differential equations with constant and variable
coefficients, on rectangular or circular domain. We have shown that the proposed method is an interesting versatile
technique, which easy to implement on a computer and being capable of producing very accurate approximations of
eigenvalue defined by partial eigenvalue problems.
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